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1. Introduction

First-quantization has provided an efficient way of calculating Yang-Mills amplitudes. A

set of rules for writing down 1-loop Yang-Mills amplitudes was first derived by Bern and

Kosower from evaluating heterotic string amplitudes in the infinite string-tension limit [1].

Later an alternative derivation of the same rules (but only for the 1-loop effective action)

from first-quantization of the particle was given by Strassler [2]. It is worth noting that

Bern and Kosower’s string approach naturally produces whole non-abelian amplitudes in-

cluding both one-particle-irreducible (1PI) and non-1PI amplitudes since such a distinction

was not present at the string level. On the other hand Strassler’s first-quantized particle

approach is based on a path integral representation of the effective action, and therefore is

intrinsically more convenient for calculating the effective action itself, or 1PI amplitudes.

In addition, the generalization of these first-quantized rules to multi-loop amplitudes has

not been clear. A generalization of Bern and Kosower’s approach seems difficult, because

the calculation of multi-loop string amplitudes is very complicated. On the other hand,

although there has been successful generalization of Strassler’s approach to derive 2-loop

Yang-Mills amplitudes from first-quantization of the particle with the sewing method [3],

a more concise representation for Yang-Mills amplitudes that is easier for generalization to

all loop levels will be preferred, if it exists. In fact, such a representation has not yet been
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found even for Yang-Mills tree amplitudes. This is partially because the vacuum, ghost

measure and Green function needed for the calculation of trees and multi-loops have not

been clarified. Although there are already many ways to compute Yang-Mills tree ampli-

tudes, it is important to clarify how first-quantization of the particle works at tree level for

the purpose of generalizing this method to both non-1PI cases and multi-loop level. This

is the main purpose of this paper.

To derive the first-quantized rules for trees, we start from theories of free relativistic

spinning particles, which were first developed by Brink et al. [4] and many others [5].

In these theories the spin degree of freedom is encoded in the worldline supersymmetry.

More precisely, the BRST quantization of the particle action with N -extended worldline

supersymmetry shows that the cohomology is of a spin-N
2 particle.

In this paper we study the N = 2 theory, which describes a spin-1 particle. We

derive the vertex operator for background gauge fields via the usual BRST quantization

method, thus ensuring background gauge invariance. (The coupling of background vec-

tor fields to the spin-1
2 particle was formulated in [4]. It was used to calculate effective

actions in [6].) We proceed to show how the correct amplitudes can be derived. In the

usual worldline approach, all interactions are derived by coupling external fields to the

1-dimensional worldline or loop. For higher-point tree graphs this approach usually re-

quires sewing lower-point tree graphs to the worldline. This does not fit the picture of

perturbation in the first-quantized theory since one would normally anticipate a formalism

that can calculate any amplitude without calculating the lower-point amplitudes first: The

knowledge of Green functions and vertex operators should be sufficient. Here we propose

an alternative (“worldgraph”) approach that includes 1D topological spaces that are not

strictly 1D manifolds: They are not always locally R1, but only fail to be so at a finite

number of points. Taking these spaces into account we derive a set of rules for computing

amplitudes that can be extended to all possible graphs.

We organize this paper as follows: In section II we give a brief review of a general

formalism to describe free spinning particles with arbitrary spin. In section III we focus

on the spin-1 particle: introducing background Yang-Mills interaction to the theory and

deriving the vertex operator for the external Yang-Mills fields. In section IV we define the

vacuum, ghost measure and Green functions for Yang-Mills tree amplitudes. In section

V we present the calculation of 3 and 4-point trees, and one-loop amplitudes, using the

worldline approach, since it is sufficient for these amplitudes. In section VI we discuss the

worldgraph approach that follows string calculations more closely, and show how it can

reproduce the tree results derived from the worldline approach.

2. Free spinning particles

We begin with the free BRST charge for arbitrary spin. A useful method for deriving

gauge invariant actions is the OSp(1,1|2) formalism [7], where one starts with the light-

cone SO(D−2) linearly realized by the physical states, and adds two bosonic coordinates to

restore Lorentz covariance and two fermionic coordinates to cancel the additional degrees

of freedom. Thus the SO(D − 2) representation is extended to OSp(D − 1, 1|2), and the
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non-linearly realized SO(D − 1, 1) of the physical states is extended to OSp(D, 2|2). The

action then uses only the subgroup SO(D − 1, 1) ⊗ OSp(1, 1|2), where the OSp(1, 1|2) is a

symmetry of the unphysical (orthogonal) directions under which the physical states should

be singlets (in the cohomology). We use (A,B . . .) for OSp(D, 2|2) indices, (a, b . . .) for the

SO(D − 1, 1) part and (+,−), (⊕,⊖) for the bosonic and fermionic indices of OSp(1, 1|2)

respectively. The easiest way is then to begin with linear generators JAB of OSp(D, 2|2),

use the gauge symmetry to gauge away the + direction of OSp(1, 1|2) and use equations

of motion to fix the − direction. Then the kinetic operator of the action is simply the

delta function of the OSp(1, 1|2) generators (now non-trivial due to solving the equation

of motion).

One can further simplify things by utilizing only a subset of the generators of

OSp(1, 1|2). (This is analogous to the method of finding SU(2) singlets by looking at

states annihilated by J3 and J−.) In the end one is left with the group IGL(1) with

generators J⊕⊖ and J⊕−. Relabeling c = x⊕ and b = ∂⊕,

J = iJ⊕⊖ + 1 = cb+ iS⊕⊖, Q = J⊕− =
1

2
c∂2 + S⊕a∂a + S⊕⊕b (2.1)

J will be the ghost number and Q the BRST charge. One is then left with the task of

finding different representation for SAB satisfying the algebra

[

SAB, S
CD

}

= −δ
[C
[ASB}

D}

There may be more than one representation corresponding to the same spin. It is easy to

build massless spin-1
2 representations using gamma matrices

spin-1
2 : SAB = −1

2 [γA.γB}, {γA, γB ] = −ηAB

and spin-1 using ket-bra

spin-1 : SAB = |[A〉〈B}|, 〈A|B〉 = ηAB

All higher spins can be built out of these two. For a review of the OSp(1, 1|2) formalism

see [8].

For our purpose we use first-quantized fields (i.e. fields on a worldline) to form rep-

resentations. It is known that the free relativistic spin-N
2 particle can be described by a

first-quantized action with N -extended worldline supersymmetry [4]. For example, for spin
1
2 we use N = 1 worldline fields ψA where ψa are fermionic fields and ψ⊕ = iγ, ψ⊖ = iβ

are the bosonic ghosts for SUSY. We summarize this representation as follows

Sab =
1

2

[

ψa, ψb
]

= ψaψb (2.2)

S⊕a =
i

2
{γ, ψa} = iγψa

S⊕⊕ =
1

2
{γ, γ} = γ2
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and
{ψa, ψb} = ηab

[γ, ψa] = 0

[γ, γ] = 0

In this letter we focus on the N = 2 spinning particle representation for massless vector

states. Now, due to N = 2 there are a pair of worldline spinors
(

ψa, ψ̄b
)

and similarly

bosonic ghosts
(

γ, γ̄, β, β̄
)

. The spin operators are then:

Sab = ψ̄aψb − ψ̄bψa (2.3)

S⊕a = iγψ̄a + iγ̄ψa

S⊕⊕ = 2γγ̄

with the following (anti-)commutation relations for the fields:

{ψ̄a, ψb} = ηab

{ψ̄a, ψ̄b} = {ψa, ψb} = [γ, β] = [γ̄, β̄] = 0

[γ, β̄] = [γ̄, β] = {b, c} = 1

3. Interacting spinning particles

Interaction with external fields is introduced by covariantizing all the derivatives in the free

BRST charge and adding a term proportional to iFabS
ab, which is the only term allowed

by dimension analysis and Lorentz symmetry. The relative coefficient can be fixed by

requiring the new interacting BRST charge QI to be nilpotent. In general the result is:

QI =
1

2
c
(

∇2 + iFabS
ab

)

+ S⊕a∇a + S⊕⊕b (3.1)

where we use the following convention for the covariant derivative and the field strength:

∇a ≡ ∂a + iAa (3.2)

iFab ≡ [∇a,∇b] (3.3)

The nilpotency of QI can be used to derive vertex operators that are Q closed. If we

define the vertex operator as

V = QI −Q

Then

Q2
I = 0 ⇒ {Q,V } + V 2 = 0

In the linearized limit, which is relevant for asymptotic states, we take only the part of V

that is linear in background fields (denoted by V0). Then one has

{Q,V0} = 0
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There will be an additional U(1) symmetry in the N = 2 model. The vector states

should be U(1) singlets and can be picked out by multiplying the original QI in eq. (3.1)

with an additional δ function (a U(1) projector).

Q′
I = δ

(

JU(1)

)

QI

JU(1) is the U(1) current:

JU(1) =
1

2

(

ψ · ψ̄ − ψ̄ · ψ
)

− γβ̄ + γ̄β = −ψ̄ · ψ +
D

2
− γβ̄ + γ̄β

where D is the spacetime dimension and ψ̄a, γ̄, β̄ have U(1) charge −1, and their complex

conjugates have +1. This U(1) constraint is important in that it ensures that QI for the

N = 2 model is indeed nilpotent. We will show this is the case.

Before choosing any specific representation, we have

Q′2
I = δ

(

JU(1)

)

Q2
I

= δ
(

JU(1)

) 1

2
{QI, QI} (3.4)

= δ
(

JU(1)

) 1

2

{

−icS⊕a[∇b, Fab] − icS⊕cSab [∇c, Fab] + iS⊕⊕SabFab + iS⊕aS⊕bFab

}

To understand how the projector works for the N = 2 model, consider normal ordering

with respect to the following scalar vacuum:

(γ, β, ψ, b) |0〉 = 0

This vacuum has U(1) charge +1 . A general normal-ordered operator with ≥ 2 barred

fields on the left (unbarred fields are on the right), acting on any state built from the

above vacuum, will either vanish or have negative U(1) charge. Therefore normal-ordered

operators with ≥ 2 barred fields will be projected out by δ(JU(1)). Actually this property

can be made true for any vacuum: One just needs to shift the current by a constant in the

projection operator.

With this in mind we have the following:

δ
(

JU(1)

)

S⊕aS⊕b = δ
(

JU(1)

) (

iγψ̄a + iγ̄ψa
)

(

iγψ̄b + iγ̄ψb
)

= −δ
(

JU(1)

)

γ̄γηab = −δ
(

JU(1)

) 1

2
S⊕⊕ηab

δ
(

JU(1)

)

S⊕⊕Sab = δ
(

JU(1)

)

2γγ̄
(

ψ̄aψb − ψ̄bψa
)

= 0 (3.5)

δ
(

JU(1)

)

S⊕cSab = δ
(

JU(1)

) (

iγψ̄c + iγ̄ψc
)

(

ψ̄aψb − ψ̄bψa
)

= δ
(

JU(1)

)

(

iγ̄ψbηac − iγ̄ψaηbc
)

(3.6)

Note that one could arrive at the same algebra for the spin operators if one were to use

the spin-1 ket-bra representation introduced in the previous section; thus one again sees
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that the U(1) projector acts as picking out vector states. In fact the nilpotency of the

BRST charge can be checked more easily using the ket-bra representation; however, for

completeness we plug the above result into our previous calculation for Q2′
I . We have

δ
(

JU(1)

)

Q2
I = cδ

(

JU(1)

) (

ψ̄aγ − γ̄ψa
) [

∇b, Fab

]

which is proportional to the equation of motion satisfied by the asymptotic states. So we

have proved that δ
(

JU(1)

)

Q2
I = 0.

The vertex operator is then easily obtained by considering QI as an expansion of Q,

V0 = [QI −Q]linear in A (3.7)

≡ cWI +WII

=
1

2
c
[

2iA · ∂ + i (∂aAb − ∂bAa)S
ab

]

+ iAaS
⊕a

= −ǫa

[

c
(

iẊa + ψ̄bψakb − ψ̄aψbkb

)

+
(

γψ̄a + γ̄ψa
)

]

exp [ik ·X (τ)]

This vertex operator satisfies

{Q,V0} = 0

The integrated vertex can be derived by noting:

[Q,WI] = ∂V0 →

[

Q,

∫

WI

]

= 0

More complicated vertex operators are needed for the usual worldline formalism. We

will discuss in detail how these operators arise in section V. In the worldgraph formalism

linearized vertex operators derived above will be sufficient.

4. Vacuum, ghost measure and Green functions

When calculating amplitudes, the vacuum with which one chooses to work dictates the

form of vertex operator and insertions one needs. In string theory, different choices of

vacuum are called different pictures. The scalar vacuum discussed above is defined by the

expectation value

〈0|c|0〉 ∼ 1

The conformal vacuum of string theory

〈0|ccc|0〉 ∼ 1

does not exist in particle theory since there aren’t that many zero modes to saturate at

tree level. On the other hand one could also treat the worldline SUSY ghosts’ zero modes,

which would require additional insertions. These are defined by the vacuum

(β̄, β, ψ, b)
∣

∣0̂
〉

= 0 ⇒
〈

0̂|cδ(γ)δ(γ̄)|0̂
〉

∼ 1

which has U(1) charge 2 and is thus not a physical vacuum.
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To use the vertex operator we found above, we need to find a U(1) neutral vacuum
∣

∣0̃
〉

that is in the cohomology of the free BRST charge Q. It is related to the previous vacuum

through the following relation:

∣

∣0̃
〉

= β̄ |0〉 = δ

(

1

2
γ2

)

∣

∣0̂
〉

,

which leads to
〈

0̃
∣

∣ γcγ̄
∣

∣0̃
〉

∼ 1

This vacuum can be understood as the Yang-Mills ghost. It has ghost number −1 and

lies in the cohomology only at zero momentum, indicating a constant field. Therefore it

corresponds to the global part of the gauge symmetry: Gauge parameters satisfyingQΛ = 0

have no effect on the gauge transformations in the free theory, δφ = QΛ. In principal one

could proceed to compute amplitudes in the available vacua mentioned above; however,

due to its U(1) neutral property, the Yang-Mills ghost vacuum should be the easiest to

extend to higher loops, since it would be easier to enforce U(1) neutrality.

With the above definition of the vacuum and the ghost measure, we can easily obtain

the tree-level Green function. For the worldline formalism the Green function for the X

fields at tree level is as usual,

ηabGB

(

τ, τ ′
)

≡
〈

Xa (τ)Xb
(

τ ′
)

〉

= −
1

2
ηab

∣

∣τ − τ ′
∣

∣

For the fermions:

ηabGF (τ, τ ′) ≡
〈

ψa (τ) ψ̄b
(

τ ′
)

〉

= ηabΘ
(

τ − τ ′
)

where Θ is a step function which is zero if the argument is negative. Note that the fermionic

Green function does not have the naive relation with the bosonic Green function

GF 6= −ĠB =
1

2
sign (τ − τ ′)

It differs by a constant 1
2 . This is due to different boundary conditions: The vacuum we

choose, which is at t = −∞, is defined to be annihilated by ψa; therefore on a time ordered

line the expectation can be non-vanishing only if ψ is at later time then ψ̄.

5. Scattering amplitudes (worldline approach)

In the worldline approach, one starts by choosing a specific worldline, and then inserts

relevant vertex operators for external states. For YM theory, where the worldline state

is the same as external states, namely a vector, the choice for worldline is less obvious.

Previous work on the worldline formalism was geared toward the calculation of one-loop

amplitudes, where the loop itself provides a natural candidate for the worldline. This

advantage is not present for tree or higher-loop amplitudes. Furthermore, for higher-point

tree graphs, calculating the amplitude from the worldline requires sewing lower-point tree

amplitudes to the worldline. This is unsatisfactory from the viewpoint of first-quantized

perturbation theory.
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Figure 1: Three diagrams to be calculated if one chooses to connect lines 1 and 4 as the world-

line. The second diagram needs a pinch operator, and the third diagram needs a vertex operator

representing the tree attached to the worldline.

In general, to calculate an n-point tree-level partial amplitude in the worldline ap-

proach:

1. Choose a specific color ordering (e.g., 12. . .n). Label external lines counter-clockwise.

2. Draw a worldline between any two of the external lines (e.g., line 1 and line n) and

connect all other external lines to this worldline in the following three ways: (a) Use

the linearized vertex operator V0 defined in section III. (b) Use a vertex operator

that is quadratic in background fields (“pinching”). This quadratic vertex operator

(“pinch operator”) can be derived from eq. (3.7) by extending the field strength to

contain the non-abelian terms and takes the form

v(ij) = ǫiaǫjbc
(

ψ̄bψa − ψ̄aψb
)

ei(ki+kj)·X

(c) Have the external lines first form a lower-point tree graph and then connect to

the worldline through either of the two vertex operators mentioned previously. This

corresponds to replacing Aa = ǫaeik·X with the non-linear part of the solution to

the field equations that the background field satisfies. For example, for a four-point

tree amplitude there are the three graphs shown in figure (1), representing the three

different ways external fields can attach to the worldline.

For lower-point graphs it is possible to choose the worldline in such a way that only

linear vertex operators are required. We will show this in our actual computation for

the four-point amplitude.

3. For each of the diagrams from above, insert three fixed vertex operators (respectively

fixed at τ = ∞, 0,−∞). Two of them represent the initial and final external states

that were connected to form the worldline, while the remaining one can be any of the

operators described above. For example, one has:

V (n)(∞)V (2)(0)V (1)(−∞) or V (n)(∞)v(32)(0)V (1)(−∞)

where the superscript (i) represents the momentum and polarization vector of the

external line i.

– 8 –
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4. Insert the remaining vertex operators as the integrated ones, e.g.,

∫

W
(i)
I or

∫

v(ij)

with the integration regions so chosen that the diagram is kept planar.

5. Evaluate the expectation value with respect to the Yang-Mills ghost vacuum.

The fact that one needs to calculate lower-point tree graphs for a general tree graph is

unsatisfactory, since one should be able to calculate an arbitrary-point amplitude without

the knowledge of its lower-point counterparts. This was less of a problem in the previous

one-loop calculations, since one can claim that the method was really for 1PI graphs, and

therefore sewing is necessary to calculate graphs that are not 1PI. It is more desirable to

be able to calculate any amplitude with the knowledge of just the vertex operators and

Green functions. This will be the aim of the “worldgraph” approach, which we leave to

section VI. We first proceed to show how to calculate 3- and 4-point trees, and one-loop

amplitudes, by the worldline approach.

5.1 3-point tree

In the 3-point case, we connect line 1 and line 3 as the worldline. The three vertex operators

are respectively fixed at τC → ∞, τB = 0 and τA → −∞. Note that we need one c ghost

to saturate the zero-mode and give a non-vanishing expectation value:

A3 =
〈

V (3) (τC)V (2) (τB)V (1) (τA)
〉

(5.1)

=
〈[

cW
(3)
I (τC)

] [

W
(2)
II (τB)

] [

W
(1)
II (τA)

]〉

+
〈[

W
(3)
II (τC)

] [

cW
(2)
I (τB)

] [

W
(1)
II (τA)

]〉

+
〈[

W
(3)
II (τC)

] [

W
(2)
II (τB)

] [

cW
(1)
I (τA)

]〉

The first term and the third term vanish due to ǫ · Ẋ in WI contracting with the eik·X in

the other two WII’s, which are proportional to ǫ3 · k3 and ǫ1 · k1 respectively, and vanish in

the Lorenz gauge. The remaining term becomes

A3 =
〈[

W
(3)
II (τC)

] [

cW
(2)
I (τB)

] [

W
(1)
II (τA)

]〉

(5.2)

= −ǫ3aǫ2cǫ1d

〈

[

(

γψ̄a + γ̄ψa
)

eik3·X
]

τC

c
[(

kc
1 + (ψ̄bψc − ψ̄cψb)k2b

)

eik2·X
]

τB

×

×
[(

γψ̄d + γ̄ψd
)

eik1·X
]

τA

〉

= − [(ǫ3 · ǫ1)(ǫ2 · k3) + (ǫ1 · ǫ2)(ǫ3 · k1) + (ǫ2 · ǫ3)(ǫ1 · k2)]

As usual (see, e.g., [13]), the contractions among the exponentials give an overall factor of

e−
P

A≤i<j≤C ki·kjGB(τi−τj) in the final result, but this factor equals 1 if we go on-shell.

– 9 –
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Figure 2: If one chooses to connect line 1 and line 3 as the worldline, there is only one diagram

to be calculated. There is no need for pinch or more complicated operators. Note that line 4 is

the integrated vertex and the integration region can be from −∞ to +∞, still keeping the graph

planar.

5.2 4-point tree

For the 4-point amplitude (with color-ordering 1234), one can calculate the three diagrams

in figure (1), but as we have mentioned, one can simplify the calculation by choosing a

worldline between line 1 and line 3. In this case, there is only one diagram to be calculated

(figure (2)), and there is only one integrated vertex operator — line 4. We fix the other

three as τD → ∞, τC = 0 and τA → −∞, and the integrated vertex has integration region

τD ≥ τB ≥ τA. We then have:

A4 =

〈

[

V (3) (τD)
] [

V (4) (τC)
]

[
∫ τD

τA

W
(2)
I (τB) dτB

]

[

V (1) (τA)
]

〉

(5.3)

=

〈

[

cW
(3)
I (τD)

] [

W
(4)
II (τC)

]

[
∫ τD

τA

W
(2)
I (τB) dτB

]

[

W
(1)
II (τA)

]

〉

+

〈

[

W
(3)
II (τD)

] [

cW
(4)
I (τC)

]

[
∫ τD

τA

W
(2)
I (τB) dτB

]

[

W
(1)
II (τA)

]

〉

+

〈

[

W
(3)
II (τD)

] [

W
(4)
II (τC)

]

[
∫ τD

τA

W
(2)
I (τB) dτB

]

[

cW
(1)
I (τA)

]

〉

The first and third term again vanish, for the same reason as in the three-point case. The

remaining term can be written in two parts by separating the integration region:

A4 = A4s +A4t (5.4)

=

〈

[

W
(3)
II (τD)

] [

cW
(4)
I (τC)

]

[
∫ τC

τA

W
(2)
I (τB) dτB

]

[

W
(1)
II (τA)

]

〉

+

〈

[

W
(3)
II (τD)

]

[
∫ τD

τC

W
(2)
I (τB) dτB

]

[

cW
(4)
I (τC)

] [

W
(1)
II (τA)

]

〉

Actually one can see these two terms as representing the s-channel and t-channel graphs

from the second-quantized approach (see figure (3)). The τ ’s are time ordered according

to the order they appear on the worldline. The results are:
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Figure 3: Two integration regions. The integrated vertex sits at 2.

A4s = −
2

s















− s
4 (ǫ1 · ǫ3) (ǫ2 · ǫ4) −

u
2 (ǫ1 · ǫ2) (ǫ4 · ǫ3)

+ (ǫ2 · k1) (ǫ4 · k3) (ǫ1 · ǫ3) + (ǫ1 · k2) (ǫ3 · k4) (ǫ2 · ǫ4)

+ (ǫ1 · k3) (ǫ2 · k4) (ǫ3 · ǫ4) + (ǫ4 · k2) (ǫ3 · k1) (ǫ1 · ǫ2)

− (ǫ1 · k2) (ǫ4 · k3) (ǫ2 · ǫ3) − (ǫ3 · k4) (ǫ2 · k1) (ǫ1 · ǫ4)

− (ǫ1 · k4) (ǫ2 · k3) (ǫ3 · ǫ4) − (ǫ3 · k2) (ǫ4 · k1) (ǫ1 · ǫ2)















(5.5)

A4t = −
2

t

















−
t

4
(ǫ1 · ǫ3) (ǫ2 · ǫ4) −

u

2
(ǫ1 · ǫ4) (ǫ2 · ǫ3)

+ (ǫ1 · k4) (ǫ3 · k2) (ǫ2 · ǫ4) + (ǫ2 · k3) (ǫ4 · k1) (ǫ1 · ǫ3)

+ (ǫ1 · k3) (ǫ4 · k2) (ǫ2 · ǫ3) + (ǫ2 · k4) (ǫ3 · k1) (ǫ1 · ǫ4)

− (ǫ1 · k2) (ǫ4 · k3) (ǫ2 · ǫ3) − (ǫ2 · k1) (ǫ3 · k4) (ǫ1 · ǫ4)

− (ǫ1 · k4) (ǫ2 · k3) (ǫ3 · ǫ4) − (ǫ3 · k2) (ǫ4 · k1) (ǫ1 · ǫ2)

















(5.6)

The sum of the above two parts is exactly the 4-point Yang-Mills tree amplitude. Note

that we don’t need the pinch operator in this calculation. This is because there cannot

be a pinch operator representing line 2 and line 4, since they are not adjacent in the color

ordering.

5.3 One-loop amplitude

It is straightforward to generalize this method to the calculation of 1-loop 1PI diagrams.

The new feature in this case is that one must ensure U(1) neutrality inside the loop. One

can think of the diagram as connecting both ends of a tree diagram, and only sum over

U(1) neutral states. The U(1) neutral states are written as:

|A, p〉 =











|a, p〉 = γψ̄a
∣

∣0̃
〉

⊗ |p〉

|ghost, p〉 =
∣

∣0̃
〉

⊗ |p〉

|antighost, p〉 = γγ̄
∣

∣0̃
〉

⊗ |p〉

where p is the momentum of the state, and the last two states are the Faddeev-Popov

ghosts for background gauge fixing. The general expression for the amplitude of n-point

1-loop 1PI diagrams is then

A1−loop
n =

∑

A,p

∫ ∞

0
dT 〈A, p|V (n) (τn)

n−1
∏

i=1

∫

τi−1≤τi≤τi+1

dτiW
(i)
I (τi) |A, p〉 (5.7)

+diagrams with pinch operators
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where we define τ0 = 0 and fix τn = T . Note that at one-loop we don’t have the freedom

to choose worldline (it should always be the loop), so one cannot avoid using the pinch

operators.

Another approach is to insert a U(1) projector in the loop to pick out all the U(1)

neutral states. That is, one inserts:

δ
[

JU(1)

]

=
1

2π

∫ 2π

0
dθ exp

[

i
θ

T

∫ T

0
dτJU(1)

]

(5.8)

=
1

2π

∫ 2π

0
dθ exp

[

i
θ

T

∫ T

0
dτ

(

− ψ̄ · ψ +
D

2
− γβ̄ + γ̄β

)]

Similar approaches have been taken in [2] and [9]. In [2], iθ is interpreted as a mass

to be taken to infinity at the end, and together with GSO-like projection kills all U(1)

non-neutral states. For us the U(1) projector naturally gets rid of all unwanted states.

Furthermore the worldline ghosts were not taken into account in [2]; therefore they need

to include the effect of Faddeev-Popov ghosts by adding covariant scalars to the action.

This is sufficient for one loop, since they couple in the same way, yet will no longer be

true for higher loops. Here we’ve (and also [9]) included all the worldline ghosts; thus the

Faddeev-Popov ghosts are naturally included. In [9] gauge fixing the U(1) gauge field on a

loop leads to a modulus, which is equivalent to θ in our U(1) projector insertion. The two

views are analogous.

The inclusion of a U(1) projector amounts to additional quadratic terms in the action

which will modify the Green function and introduce an additional θ-dependent term to the

measure. Here we give a brief discussion of its effect. The kinetic operator for the SUSY

partners and SUSY ghosts is now:

∂τ + i
θ

T

The θ term can be absorbed by redefining the U(1) charged fields,

Ψ′ = eiθτ/T Ψ Ψ̄′ = e−iθτ/T Ψ̄

where Ψ = (ψa, γ, β). Then the integration over θ is really integrating over all possible

boundary conditions since:

Ψ′(T ) = eiθΨ′(0)

Without loss of generality, we choose the periodic boundary condition for the original fields

Ψ.

The 1-loop vacuum bubble is then computed through mode expansion on a circle with

periodic boundary condition:

Det

(

∂τ + i
θ

T

)D−2

=

[

2i sin

(

θ

2

)]D−2

where D comes from the ψψ̄ integration and −2 comes from SUSY ghosts. The fermionic

Green function will be modified to

GF

(

τ, τ ′
)

=
e−

iθ(τ−τ ′)
T

2i sin θ
2

[

ei
θ
2 Θ

(

τ − τ ′
)

+ e−i θ
2 Θ

(

τ ′ − τ
)

]
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which satisfies the periodic boundary condition and differential equation
(

∂τ + i
θ

T

)

GF

(

τ, τ ′
)

= δ
(

τ − τ ′
)

Also, at one loop there are two zero-modes, one modulus (the circumference of the loop)

and one Killing vector. The proper insertions for the vacuum are:

〈

0̃|bc|0̃
〉

∼ 1

In general, the n-point 1-loop 1PI amplitude can thus be written as

A1−loop
n = gn

∫ ∞

0

1

TD/2
dT

〈

δ
[

JU(1)

]

bV (n) (τn)

n−1
∏

i=1

∫

τi−1≤τi≤τi+1

dτiW
(i)
I (τi)

〉

(5.9)

+diagrams with pinch operators

= gn 1

2π

∫ ∞

0

1

TD/2
dT

∫ 2π

0
dθ

[

2i sin

(

θ

2

)]D−2

×

×

〈

W
(n)
I (τn)

n−1
∏

i=1

∫

τi−1≤τi≤τi+1

dτiW
(i)
I (τi)

〉

+diagrams with pinch operators

We’ve added the coupling constant g, but omitted group theory factors, such as a trace

and a factor Nc of the number of colors for the planar contribution. The XX contraction

should be calculated by the 1-loop bosonic Green function:

〈

Xa (τ)Xb
(

τ ′
)

〉

= ηabGB

(

τ − τ ′
)

= ηab

[

−
1

2

∣

∣τ − τ ′
∣

∣ +
(τ − τ ′)2

2T

]

For example, the two-point contribution to the effective action is (including the usual

− sign for the action, 1
2 for permutations, and group theory factor for this case)

Γ1−loop
2 = −

g2Nc

4π

∫ ∞

0

1

TD/2
dT

∫ 2π

0
dθ

[

2i sin

(

θ

2

)]D−2 ∫ T

0
dτ

〈

W
(2)
I (T )W

(1)
I (τ)

〉

= −g2Nc

∫ ∞

0

1

TD/2
dT

∫ T

0
dτ







(

δ (T − τ) − 1
T

)

(ǫ1 · ǫ2)

+
(

1
2 − τ

T

)2
(ǫ2 · k1) (ǫ1 · k2)

− (ǫ2 · k1) (ǫ1 · k2) + (k1 · k2) (ǫ1 · ǫ2)






×

×e
1
2
k1·k2

„

T−τ−
(T−τ)2

T

«

= −g2Nc

(

k2
1

2

)−ǫ (

1 −
1

12

)

Γ (ǫ) [(ǫ1 · ǫ2)(k1 · k2) − (ǫ1 · k2)(ǫ2 · k1)]

= −
11

24
tr

{

F ab
1

[

1

ǫ
− log

(

1

2
k2
1

)]

F2ab

}

In the final line we have used dimensional regularization D = 4−2ǫ, and dropped the term

with the δ function, which gives the tadpole contribution. Modified minimal subtraction
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Figure 4: The topological space for a three-point interaction

was used, with the conventions of ref. [8]. Note that the − 1
12 piece comes from the scalar

graph while the 1 comes from terms with the fermion Green function. The diagram with

pinch operator does not contribute in this case.

6. Worldgraph approach

As mentioned previously, it is desirable even for tree graphs to develop a formalism that

does not require an identification of a worldline to which external states are attached.

Intuitively such a formalism would require one to simply identify 1D topological spaces

that connect the external lines. This idea is very similar to string theory calculations

and goes back as far as 1974 [10]. The main challenge for this “worldgraph approach”

(following [11]) is the definition of Green functions on these non-differentiable topological

spaces (non-differentiable because at interacting points it is not locally R1). Previously, for

multi-loops such Green functions have been derived by a combination of one-loop Green

functions and insertions: See [12] for review. Recently in [13] a more straightforward way

to derive multi-loop Green functions was developed for scalar particles using the electric

circuit analog. (A similar approach was used in [11].) Since fermion Green functions are

related to bosons through a derivative (up to additional terms due to choice of vacuum

or boundary conditions), what remains is to consistently define derivatives on these 1D

topological spaces. We will use tree graphs as our testing ground.

Consider the three-point amplitude: One has only one graph, figure (4). The arrows

indicate the direction in which each τi is increasing. For scalar fields it was shown [13] that

the appropriate Green function is proportional to the distance between two insertions; for

the 3-point graph this is taken to be −1
2(τi + τj).

To define derivatives, one notes that they are worldline vectors and therefore must be

conserved at each interaction point. This leads to the conclusion that if we denote the

worldgraph derivative on each line as D(τi), for the three-point graph they must satisfy:

Dτ1 +Dτ2 +Dτ3 = 0 (6.1)
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This can be solved by defining the worldgraph derivatives as follows:

Dτ1 = ∂τ2 − ∂τ3 (6.2)

Dτ2 = ∂τ3 − ∂τ1

Dτ3 = ∂τ1 − ∂τ2

There is another solution which corresponds to (counter-)clockwise orientation. The choice

of orientation can be fixed by matching it with the color ordering. Since the derivative is

a local operator, its definition will not be altered if the three-point graph is connected to

other pieces to form larger graphs. The fermionic Green function then follows from the

bosonic by taking ψ as a worldline scalar and ψ̄ as a worldline vector:

GF (τi, τj) ≡ 〈ψ̄(τi)ψ(τj)〉 = 2〈Dτi
X(τi)X(τj)〉

Armed with these two Green functions we can show how the three-point amplitude works.

6.1 3-point tree

For the three-point tree graph figure (4) we start with:

A3 =
〈

V (3) (τ3)V
(2) (τ2)V

(1) (τ1)
〉

(6.3)

=
〈[

cW
(3)
I (τ3)

] [

W
(2)
II (τ2)

] [

W
(1)
II (τ1)

]〉

+
〈[

W
(3)
II (τ3)

] [

cW
(2)
I (τ2)

] [

W
(1)
II (τ1)

]〉

+
〈[

W
(3)
II (τ3)

] [

W
(2)
II (τ2)

] [

cW
(1)
I (τ1)

]〉

Now the worldline derivatives in WI are replaced by worldgraph derivatives defined in

eq. (6.2) and they give:
〈

iǫ1 ·Dτ1X(τ1)e
i[

P3
i=1 ki·X(τi)]

〉

= −(ǫ1 · k3) (6.4)
〈

iǫ2 ·Dτ2X(τ2)e
i[

P3
i=1 ki·X(τi)]

〉

= −(ǫ2 · k1) (6.5)
〈

iǫ3 ·Dτ3X(τ3)e
i[

P3
i=1 ki·X(τi)]

〉

= −(ǫ3 · k2) (6.6)

The fermionic Green functions are (with Fij ≡ 〈ψ̄(τi)ψ(τj)〉):

F12 = −1, F23 = −1, F31 = −1

F21 = +1, F32 = +1, F13 = +1
(6.7)

Using the above one can compute eq. (6.3). The first term becomes:

A3−1 = 〈[cWI (τ3)] [WII (τ2)] [WII (τ1)]〉 (6.8)

= −ǫ3aǫ2cǫ1d〈c[iDX
a + (ψ̄bψa − ψ̄aψb)k3b]τ3 [γψ̄

c + γ̄ψc]τ2 ×

×[γψ̄d + γ̄ψd]τ1e
ik1·Xτ1eik2·Xτ2eik3·Xτ3 〉

= −ǫ2cǫ1d〈[−(ǫ3 · k2) + (ψ̄bψa − ψ̄aψb)ǫ3ak3b]τ3 [ψ̄
c(τ2)ψ

d(τ1) + ψc(τ2)ψ̄
d(τ1)]〉

= 2(ǫ3 · k2)(ǫ2 · ǫ1) + 2(ǫ2 · k1)(ǫ3 · ǫ1) + 2(ǫ1 · k3)(ǫ2 · ǫ3)
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Figure 5: The two graphs for the four-point interaction

A similar derivation gives the second and third terms:

A3−2 = 〈[WII (τ3)] [cWI (τ2)] [WII (τ1)]〉 (6.9)

= 2(ǫ3 · k2)(ǫ2 · ǫ1) + 2(ǫ2 · k1)(ǫ3 · ǫ1) + 2(ǫ1 · k3)(ǫ2 · ǫ3)

A3−3 = 〈[WII (τ3)] [WII (τ2)] [cWI (τ1)]〉

= 2(ǫ3 · k2)(ǫ2 · ǫ1) + 2(ǫ2 · k1)(ǫ3 · ǫ1) + 2(ǫ1 · k3)(ǫ2 · ǫ3)

Note that the three terms are the same, which respects the symmetry of the graph.

6.2 4-point tree

For the 4-point amplitude we have two graphs (s channel and t channel, see figure (5))

constructed by connecting two three-point worldgraphs on a worldline. The worldline in

the middle is actually a modulus of the theory, and one must insert a b ghost. We focus on

the s-channel graph; the t-channel graph can later be derived by exchanging the external

momenta and polarizations in the s-channel amplitude. We wish to derive

A4s =

∫ ∞

0
dT

〈

V (4)(τ4)V
(3)(τ3)b(T )V (2)(τ2)V

(1)(τ1)
〉

(6.10)

=

∫ ∞

0
dT





























〈

W
(4)
II (τ4)cW

(3)
I (τ3)b(T )cW

(2)
I (τ2)W

(1)
II (τ1)

〉

+
〈

cW
(4)
I (τ4)cW

(3)
I (τ3)b(T )W

(2)
II (τ2)W

(1)
II (τ1)

〉

+
〈

cW
(4)
I (τ4)W

(3)
II (τ3)b(T )cW

(2)
I (τ2)W

(1)
II (τ1)

〉

+
〈

cW
(4)
I (τ4)W

(3)
II (τ3)b(T )W

(2)
II (τ2)cW

(1)
I (τ1)

〉

+
〈

W
(4)
II (τ4)cW

(3)
I (τ3)b(T )W

(2)
II (τ2)cW

(1)
I (τ1)

〉

+
〈

W
(4)
II (τ4)W

(3)
II (τ3)b(T )cW

(2)
I (τ2)cW

(1)
I (τ1)

〉





























First we address the Green functions. As in [13] the bosonic Green function is still

−1
2L, where L is the length between two fields. Thus it is the same as in the three-point

case, except that when the two fields sit on opposite ends of the modulus, one needs to add

the value of the modulus T . The worldgraph derivatives still act the same way, since the
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definition is local, irrespective of other parts of the graph. This gives the following result

for the s-channel graph:

〈

iǫ1 ·Dτ1X(τ1)e
i[

P4
i=1 ki·X(τi)]

〉

= −(ǫ1 · k2)

〈

iǫ2 ·Dτ2X(τ2)e
i[

P4
i=1 ki·X(τi)]

〉

= +(ǫ2 · k1)

〈

iǫ3 ·Dτ3X(τ3)e
i[

P4
i=1 ki·X(τi)]

〉

= −(ǫ3 · k4)

〈

iǫ4 ·Dτ4X(τ4)e
i[

P4
i=1 ki·X(τi)]

〉

= +(ǫ4 · k3)

The fermionic Green functions are again more subtle. There are two types, that for bc

ghosts and that for the ψ̄ψ. First one notes that on the modulus, which is a worldline, both

Green functions should be a step function, as explained in section IV. This is sufficient for

the b, c ghosts. For ψ̄ψ, since they can contract with each other on the same three-point

graph or contract across the modulus, one must take the combined result: For contractions

on the same three-point graph the rules are just as eq. (6.7), while for contraction across

the modulus one multiplies the two Green functions on the two vertices with one from the

modulus. For example, in the s-channel graph figure (5):

〈

ψ̄(τ1)ψ(τ3)
〉

=
〈

ψ̄(τ1)ψ(τT )
〉 〈

ψ̄(τT )ψ(τ3)
〉

Θ(T ) = −1

As one can see, the contraction across the modulus is broken down as if there were a pair

ψ̄ψ on each end of the modulus, contracting with the vertices separately, and a final step

function due to the fact that the modulus is a worldline. (We choose the left time to be

earlier.) We now list all the relevant Green functions for the s-channel graph. The Green

functions for the bc ghosts are

〈c(τ1)b(T )〉 = 1, 〈c(τ2)b(T )〉 = 1, 〈c(τ3)b(T )〉 = 0, 〈c(τ4)b(T )〉 = 0

and the Green functions for the ψ̄ψ are (recall that we have defined Fij ≡ 〈ψ̄(τi)ψ(τj)〉)

F12 = +1, F21 = −1, F34 = +1, F43 = −1

F23 = +1, F32 = 0, F14 = +1, F41 = 0

F13 = −1, F31 = 0, F24 = −1, F42 = 0

Equipped with the Green functions one can compute eq. (6.10). We do the bc contrac-

tions first. Each term has two such contractions; using the above Green functions we see

that the second and last terms cancel. We then have:

A4s =

∫ ∞

0
dT

















〈

cW
(4)
II (τ4)W

(3)
I (τ3)W

(2)
I (τ2)W

(1)
II (τ1)

〉

−
〈

cW
(4)
I (τ4)W

(3)
II (τ3)W

(2)
I (τ2)W

(1)
II (τ1)

〉

+
〈

cW
(4)
I (τ4)W

(3)
II (τ3)W

(2)
II (τ2)W

(1)
I (τ1)

〉

−
〈

cW
(4)
II (τ4)W

(3)
I (τ3)W

(2)
II (τ2)W

(1)
I (τ1)

〉
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Expanding out all possible contractions and implementing the Green functions and noting

that
〈DX(τ1)DX(τ3)〉 = −2δ(T ), 〈DX(τ2)DX(τ4)〉 = −2δ(T )

〈DX(τ1)DX(τ4)〉 = +2δ(T ), 〈DX(τ2)DX(τ3)〉 = +2δ(T )

With these Green functions in hand we arrive at the following s-channel amplitude:

A4s =
8

s















+ s
4 (ǫ1 · ǫ4) (ǫ2 · ǫ3) −

s
4 (ǫ2 · ǫ4) (ǫ1 · ǫ3) − ( s

4 + u
2 ) (ǫ1 · ǫ2) (ǫ4 · ǫ3)

+ (ǫ2 · k1) (ǫ4 · k3) (ǫ1 · ǫ3) + (ǫ1 · k2) (ǫ3 · k4) (ǫ2 · ǫ4)

+ (ǫ1 · k3) (ǫ2 · k4) (ǫ3 · ǫ4) + (ǫ4 · k2) (ǫ3 · k1) (ǫ1 · ǫ2)

− (ǫ1 · k2) (ǫ4 · k3) (ǫ2 · ǫ3) − (ǫ3 · k4) (ǫ2 · k1) (ǫ1 · ǫ4)

− (ǫ1 · k4) (ǫ2 · k3) (ǫ3 · ǫ4) − (ǫ3 · k2) (ǫ4 · k1) (ǫ1 · ǫ2)















A similar calculation can be done for the t-channel graph, and the result is simply changing

the labeling of all momenta and polarizations in the s-channel result according to:

s → t

1 → 4

2 → 1

3 → 2

4 → 3

We arrive at:

A4t =
8

t















+ t
4 (ǫ4 · ǫ3) (ǫ2 · ǫ1) −

t
4 (ǫ2 · ǫ4) (ǫ1 · ǫ3) − ( t

4 + u
2 ) (ǫ1 · ǫ4) (ǫ2 · ǫ3)

+ (ǫ1 · k4) (ǫ3 · k2) (ǫ2 · ǫ4) + (ǫ2 · k3) (ǫ4 · k1) (ǫ1 · ǫ3)

+ (ǫ1 · k3) (ǫ4 · k2) (ǫ2 · ǫ3) + (ǫ2 · k4) (ǫ3 · k1) (ǫ1 · ǫ4)

− (ǫ1 · k2) (ǫ4 · k3) (ǫ2 · ǫ3) − (ǫ2 · k1) (ǫ3 · k4) (ǫ1 · ǫ4)

− (ǫ1 · k4) (ǫ2 · k3) (ǫ3 · ǫ4) − (ǫ3 · k2) (ǫ4 · k1) (ǫ1 · ǫ2)















Adding the two channels again gives the complete 4-point amplitude.

7. Conclusions

From the rules of the previous two examples we can extend our approach to higher-points.

The fermionic Green functions are constructed as direct products of Green functions of

each of the subgraphs that constitute the entire graph.

In this paper, we have derived first-quantized rules for Yang-Mills tree amplitudes.

The derivation is based on the BRST quantization of the spinning particle. We derived the

vertex operators and vacuum in the BRST formalism, and this ensures background gauge

invariance for our amplitude. Rules for tree amplitude calculation have been established

after defining the derivative on 1D topological spaces. Such rules should be similar to ones

that will be required for higher-loop calculations. It would also be interesting to consider

the N=4 spinning particle, where one can couple to background gravity and calculate

gravity amplitudes.
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